This is a review submitted to Mathematical Reviews/MathSciNet.
Reviewer Name: Konstantopoulos, Takis
Mathematical Reviews/MathSciNet Reviewer Number: 68397

Address:

Department of Mathematics
Uppsala University
PO Box 480
SE-75106 Uppsala
SWEDEN
takiskonst@gmail.com
Author: Levin, Mordechay B.
Title: On the Gaussian limiting distribution of lattice points in a parallelepiped.
MR Number: MR3636290
Primary classification:
Secondary classification(s):

Review text:

amsmath,amsthm,amsfonts,amssymb,mathrsfs,epsfig,bm
This work is motivated by a theorem by J. Beck (1992). Let X, Y, Z are independent random variables, all uniformly distributed between 0 and 1. Consider the lattice $Z+n \sqrt{2}, n \in \mathbb{Z}$, and look at the fractional parts $\{n \sqrt{2}+Z\}$ of its points. Count the number of these fractional parts, for $0 \leq n \leq N x$, for positive integer N, that fall between 0 and Y and subtract its "mean" value $N X Y$. Then

$$
(\log N)^{-1 / 2}\left(\sum_{n=0}^{[N X]} \mathbf{1}_{\{n \sqrt{2}+Z\} \leq Y}-N X Y\right)
$$

converges in distibution, as $N \rightarrow \infty$, to a normal random variable with zero mean and positive variance.

The main result of this paper is a far-reaching generalization of the theorem in s dimensions. Let Γ be a lattice obtained from a module in a totally real algebraic number field. Denote by $\operatorname{det} \Gamma$ the volume (s-dimensional Lebesgue measure) of the fundamental region of Γ. For a bounded set \mathcal{O} with volume $\operatorname{vol} \mathcal{O}$ and a vector $\mathbf{x} \in[0,1]^{s}$ let

$$
\mathcal{R}(\mathcal{O}+\mathbf{x}, \Gamma):=\sum_{\gamma \in \Gamma} \mathbf{1}_{\gamma \in \mathcal{O}+\mathbf{x}}-\frac{\operatorname{vol} \mathcal{O}}{\operatorname{det} \Gamma}
$$

Let $\mathbb{K}_{s}:=[-1 / 2,1 / 2]^{s}, \mathbf{N}=\left(N_{1}, \ldots, N_{s}\right)$ an integer vector, and $\boldsymbol{\Theta}$ be a random variable uniformly distributed in $[0,1]^{s}$. Consider the set

$$
\boldsymbol{\Theta} \cdot \mathbf{N} \cdot \mathbb{K}_{s}:=\left\{\left(\Theta_{1} N_{1} y_{1}, \ldots, \Theta_{s} N_{s} y_{s}\right):\left(y_{1}, \ldots, y_{s}\right) \in \mathbb{K}_{s}\right\}
$$

and let

$$
w(\mathbf{N}, \mathbf{x})^{2}:=\operatorname{Var}\left[\mathcal{R}\left(\boldsymbol{\Theta} \cdot \mathbf{N} \cdot \mathbb{K}_{s}+\mathbf{x}, \Gamma\right)\right]
$$

Then $w(\mathbf{N}, \mathbf{x})$ is finite and positive and

$$
\frac{\mathcal{R}\left(\boldsymbol{\Theta} \cdot \mathbf{N} \cdot \mathbb{K}_{s}+\mathbf{x}, \Gamma\right)}{w(\mathbf{N}, \mathbf{x})}
$$

converges in distribution to a standard normal random variable for all $\mathbf{x} \in[0,1]^{s}$. Moreover the uniform deviation of the distribution function of this ratio from the standard normal distribution function is of order $\left(\log _{2}\left(N_{1} \cdots N_{s}\right)\right)^{-1 / 15}$.

According to the author, the problems considered in the paper are related to quantum chaos theory as the number of eigenvalues of a quantum mechanical operator in a large interval $[0, t]$ leads to the problem of couting lattice points in a domain dilated by the factor t.

